longevity

A senior long jumper competes in the 80-84-year-old age division at the 2007 World Masters Championships Stadia (track and field competition) at Riccione Stadium in Riccione, Italy on September 6, 2007. From the book project Racing Age.

Angela Jimenez

What if a simple blood test revealed how fast you're aging, and this meant more to you and your insurance company than the number of candles on your birthday cake?

The question of why individuals thrive or decline has loomed large in 2020, with COVID-19 harming people of all ages, while leaving others asymptomatic. Meanwhile, scientists have produced new measures, called aging clocks, that attempt to predict mortality and may eventually affect how we perceive aging.

Take, for example, "senior" athletes who perform more like 50-year-olds. But people over 65 are lumped into one category, whether they are winning marathons or using a walker. Meanwhile, I'm entering "middle age," a label just as vague. It's frustrating to have a better grasp on the lifecycle of my phone than my own body.

Keep Reading Keep Reading
Matt Fuchs

Matt Fuchs is a health and science writer based in Silver Spring, Maryland. He has written on a variety of health topics, including profiles of older athletes defying their ages, for publications such as The Washington Post, The Washington Post Magazine, and Medium's The Startup. He is also a science fiction author. Follow him on Twitter, @fuchswriter.

Summit County resident Gloria Breigenzer, 75, does a yoga headstand in the Rocky Mountains while her horse looks on.

(Photo credit: Thomas Breigenzer)


People are living longer in the world's richest countries, according to a recent Pew Report. Certain areas, in particular, have drawn the attention of researchers who study longevity because in those places, living to 100 is not unusual.

"If you want to live longer, shape your environment."

At 8000 feet up, Summit County, Colorado is a longevity hotspot. Surrounded by mountains that soar to more than 14,000 feet, the population of nearly 31,000 brags the highest expected lifespan in the United States, at 86.83 years. For comparison, the average life expectancy in the U.S. is 78.6 years.

So, what is it about living in Summit County that has brought about this high honor?

Despite popular belief, it's not about genes. Only about "20-30 percent of longevity can be predicted by genetics," longevity researcher Howard S. Friedman wrote in an email exchange. Friedman, a professor at the University of California at Riverside, co-authored a book about a famous study that followed participants for eight decades to learn what traits and factors contribute to a long life.

"About half is behavioral (including environmental)," Friedman says. "The rest is random (chance)." His longevity research is based on work that began in 1921 by Stanford University psychologist Lewis Terman. To discern the keys to longevity, Friedman and colleagues spent 20 years looking back at the lives led by the 1500 "gifted" 11-year old boys and girls who were born in 1910 and participated in Terman's study.

"We found that ambition, perseverance, and high motivation … predicted not only success but also longevity: Stressful job and hard work, long life!" Friedman says.

Longevity expert Dan Buettner agrees that an individual's environment is key. Buettner studies what he calls Blue Zones, where people "naturally live longer." But, unlike the five Blue Zones in the world -- Okinawa, Japan; Sardinia, Italy; Nicoya, Costa Rica; Ikaria, Greece; and Loma Linda, California — the majority of the Summit County population chose to move to the mountain towns that make up the region. Because Buettner believes that people can be taught to live longer, he sees Summit County as an instructive locale.

Like the Blue Zones, people in Summit County "do not pursue healthy lifestyles; [rather] it ensues," he says. "Blue Zones have the benefit of traditional patterns of eating and traditional rhythms of life. So they tend to be places where people walk to work, to a friend's house … [and] Blue Zone people eat the right food -- not because they have better individual responsibility or discipline; they simply live in an environment where beans, greens, nuts and grains are cheapest and most accessible."

"If you want to live longer," Buettner says, "shape your environment."

But an individual's environment can be affected by a number of factors, including socioeconomics, race, quality of and access to health care, as well as behavioral and metabolic risks. While the residents of Summit County smoke less and exercise more than those in regions with shorter life spans, they also have higher incomes and levels of education and lower unemployment.

"The healthiest individuals in The Longevity Project…lived meaningful, committed lives. They worked hard and played hard."

Gloria Breigenzer moved to Summit County 20 years ago with her husband. "We wanted to ski and ride horses up in the mountains," says Breigenzer. The 75-year-old still works part time as a hair dresser, goes to the gym every day, lifts weights and does yoga.

"I don't know why people don't want to get up and go out and work out and do stuff. I do," says the grandmother, who also exercises her rescue horse five days a week and for the past 15 years has done swing, country two step, and jazz dance in a group with her 77-year-old husband. She's also taking kiteboarding lessons and for the past two years has spent every afternoon studying Spanish.

Pete and Judy Rubin, both 65, retired to Summit County nearly two years ago from Cleveland. In Colorado, "socializing doesn't revolve around food," says Pete. "In Cleveland it always did…[Being outside] in summer or in winter is just easy. Skiing, on a bike, taking a hike, mowing the lawn, looking at a mountain instead of having someone else do it."

The Summit County approach resonates for researcher Friedman, who says that it's the "constellations of habits and patterns of living," that stood out most to him in his study. "Throw away your lists...The healthiest individuals in The Longevity Project…lived meaningful, committed lives. They worked hard and played hard. They were very persistent and responsible, and they were dedicated to things and people beyond themselves."

The following are some of the common denominators found in populations that live longer, including those who live in Summit County:

Plant-based diet: "Eat meat, no more than 5 times a month … [and] 95 percent of all the calories you take in should be whole plant-based foods," says Buettner.

Know your purpose: Buettner found that having and understanding your sense of purpose is worth up to seven years of extra life expectancy.

Have friendships: "You should have three to five friends who are healthy themselves who you can call on a bad day and they'll care," says Buettner.

Be on the move: Populations in zones where there is higher longevity "move naturally" as part of their day. It's not about diets. "No diet in the history of the world has worked for more than 5 percent of people after two years," says Buettner.

Relieve stress: "You should have some daily practices that help you downshift," says Buettner. It "could be taking naps, or meditation practice, or a habit of praying or a habit of doing happy hours."

Employ a family first rule: "Successful centenarians put their families first," explains Buettner. "And that means keeping your aging parents nearby, being seriously invested in your partner and if you have kids, you make them a priority."

It's these "key patterns of living [that] tend to make you both healthier and happier," says Friedman. "And health and happiness often then mutually reinforce each other."

Cari Shane
Cari Shane is a freelance journalist and corporate writer, skier, swimmer and Airbnb Superhost. Originally from Manhattan, Shane now lives carless in Washington, DC and writes for The Washington Post (newspaper and magazine), USA Today, OZY, Fodor’s, NextAve, and more.
Get our top stories twice a month
Follow us on

Eliminating "zombie-like" cells, called senescent cells, may hold the key to slowing aging and its chronic diseases.

(© eshma/Adobe)


Imagine reversing the processes of aging. It's an age-old quest, and now a study from the Mayo Clinic may be the first ray of light in the dawn of that new era.

The immune system can handle a certain amount of senescence, but that capacity declines with age.

The small preliminary report, just nine patients, primarily looked at the safety and tolerability of the compounds used. But it also showed that a new class of small molecules called senolytics, which has proven to reverse markers of aging in animal studies, can work in humans.

Aging is a relentless assault of chronic diseases including Alzheimer's, cardiovascular disease, diabetes, and frailty. Developing one chronic condition strongly predicts the rapid onset of another. They pile on top of each other and impede the body's ability to respond to the next challenge.

"Potentially, by targeting fundamental aging processes, it may be possible to delay or prevent or alleviate multiple age-related conditions and many diseases as a group, instead of one at a time," says James Kirkland, the Mayo Clinic physician who led the study and is a top researcher in the growing field of geroscience, the biology of aging.

Getting Rid of "Zombie" Cells

One element common to many of the diseases is senescence, a kind of limbo or zombie-like state where cells no longer divide or perform many regular functions, but they don't die. Senescence is thought to be beneficial in that it inhibits the cancerous proliferation of cells. But in aging, the senescent cells still produce molecules that create inflammation both locally and throughout the body. It is a cycle that feeds upon itself, slowly ratcheting down normal body function and health.

Disease and harmful stimuli like radiation to treat cancer can also generate senescence, which is why young cancer patients seem to experience earlier and more rapid aging. The immune system can handle a certain amount of senescence, but that capacity declines with age. There also appears to be a threshold effect, a tipping point where senescence becomes a dominant factor in aging.

Kirkland's team used an artificial intelligence approach called machine learning to look for cell signaling networks that keep senescent cells from dying. To date, researchers have identified at least eight such signaling networks, some of which seem to be unique to a particular type of cell or tissue, but others are shared or overlap.

Then a computer search identified molecules known to disrupt these signaling pathways "and allow cells that are fully senescent to kill themselves," he explains. The process is a bit like looking for the right weapons in a video game to wipe out lingering zombie cells. But instead of swords, guns, and grenades, the list of biological tools so far includes experimental molecules, approved drugs, and natural supplements.

Treatment

"We found early on that targeting single components of those networks will only kill a very small minority of senescent cells or senescent cell types," says Kirkland. "So instead of going after one drug-one target-one disease, we're going after networks with combinations of drugs or drugs that have multiple targets. And we're going after every age-related disease."

The FDA is grappling with guidance for researchers wanting to conduct clinical trials on something as broad as aging rather than a single disease.

The large number of potential senolytic (i.e. zombie-neutralizing) compounds they identified allowed Kirkland to be choosy, "purposefully selecting drugs where the side effects profile was good...and with short elimination half-lives." The hit and run approach meant they didn't have to worry about maintaining a steady state of drugs in the body for an extended period of time. Some of the compounds they selected need only a half hour exposure to trigger the dying process in senescent cells, which can then take several days.

Work in mice has already shown impressive results in reversing diabetes, weight gain, Alzheimer's, cardiovascular disease and other conditions using senolytic agents.

That led to Kirkland's pilot study in humans with diabetes-related kidney disease using a three-day regimen of dasatinib, a kinase inhibitor first approved in 2006 to treat some forms of blood cancer, and quercetin, a flavonoid found in many plants and sold as a food supplement.

The combination was safe and well tolerated; it reduced the number of senescent cells in the belly fat of patients and restored their normal function, according to results published in September in the journal EBioMedicine. This preliminary paper was based on 9 patients in an ongoing study of 30 patients.

Kirkland cautions that these are initial and incomplete findings looking primarily at safety issues, not effectiveness. There is still much to be learned about the use of senolytics, starting with proof that they actually provide clinical benefit, and against what chronic conditions. The drug combinations, doses, duration, and frequency, not to mention potential risks all must be worked out. Additional studies of other diseases are being developed.

What's Next

Ron Kohanski, a senior administrator at the NIH National Institute on Aging (NIA), says the field of senolytics is so new that there isn't even a consensus on how to identify a senescent cell, and the FDA is grappling with guidance for researchers wanting to conduct clinical trials on something as broad as aging rather than a single disease.

Intellectual property concerns may temper the pharmaceutical industry's interest in developing senolytics to treat chronic diseases of aging. It looks like many mix-and-match combinations are possible, and many of the potential molecules identified so far are found in nature or are drugs whose patents have or will soon expire. So the ability to set high prices for such future drugs, and hence the willingness to spend money on expensive clinical trials, may be limited.

Still, Kohanski believes the field can move forward quickly because it often will include products that are already widely used and have a known safety profile. And approaches like Kirkland's hit and run strategy will minimize potential exposure and risk.

He says the NIA is going to support a number of clinical trials using these new approaches. Pharmaceutical companies may feel that they can develop a unique part of a senolytic combination regimen that will justify their investment. And if they don't, countries with socialized medicine may take the lead in supporting such research with the goal of reducing the costs of treating aging patients.

Bob Roehr
Bob Roehr is a biomedical journalist based in Washington, DC. Over the last twenty-five years he has written extensively for The BMJ, Scientific American, PNAS, Proto, and myriad other publications. He is primarily interested in HIV, infectious disease, immunology, and how growing knowledge of the microbiome is changing our understanding of health and disease. He is working on a book about the ways the body can at least partially control HIV and how that has influenced (or not) the search for a treatment and cure.

A healthy middle-aged couple enjoying a hike. (Shutterstock)

(Shutterstock)


[Editor's Note: This video is the fourth of a five-part series titled "The Future Is Now: The Revolutionary Power of Stem Cell Research." Produced in partnership with the Regenerative Medicine Foundation, and filmed at the annual 2019 World Stem Cell Summit, this series illustrates how stem cell research will profoundly impact human life.]

Kira Peikoff
Kira Peikoff is a journalist whose work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and son.

A birthday celebration in the future for someone reaching 150 years old.

(© efesan/Fotolia)


Dr. Michael West has a storied legacy in the world of aging research. Twenty years ago, the company he started, Geron, hit upon a major breakthrough when his scientists isolated the active component for the gene that confers immortality to cells, called telomerase.

In the twenty years since, a new field has emerged: the science of extending the human "healthspan."

He was in the lab when scientists for the first time artificially turned on the gene in some skin cells donated by Dr. Leonard Hayflick, the man who had discovered back in 1965 that human cells age over time. Sure enough, with Geron's intervention, Hayflick's skin cells became immortal in the dish, and the landmark paper was published in Science in 1998.

In the twenty years since, a new field has emerged: the science of extending the human "healthspan" – the length of time people can live free of diseases related to aging. A substantial amount of preclinical and some clinical research is now underway, backed by heavy investments from some of the world's largest companies.

Today, Dr. West is the CEO of AgeX Therapeutics, a biotech company that is developing novel therapeutics to target human aging and age-related degenerative diseases using pluripotent stem cells. Dr. West recently shared some key insights with Editor-in-Chief Kira Peikoff about what's happening in this exciting space.

1) Pluripotent stem cells have opened the door for the first time in human history to manufacturing young cells and young tissue of any kind.

These are the body's master cells: They are self-replicating, and they can potentially give rise to any cell or tissue the body needs to repair itself. This year marks the 20th anniversary since their isolation for the first time in a lab.

"People in biotech say that the time from lab to discovery in products is about 20 years," West says. "But the good news is we're at that 20-year mark now, so you're seeing an explosive growth of applications. We can now make all cell types of the human body in a scalable manner."

2) Early human development could hold the key to unlocking the mystery of aging.

West believes that two things occur when the body forms in utero: telomerase, the immortalizing gene, gets turned off very early in development in the body cells like skin, liver, and nerves. Additionally, he thinks that a second genetic switch gets turned off that holds the potential for regeneration after injury.

"These insights open the door to intervention by the transfer of telomerase into the cells of the body."

"Very early when the body is first forming, if you cut the skin, it will not respond by scarring, but will regenerate scarlessly," he says. "But that potential gets turned off once the body is formed, about 8 weeks after fertilization. Then, you accumulate damage over a lifetime. Not only do cells have a finite capacity to replicate, but you have tissue damage."

However, there are animals in nature whose telomerase is never turned off, or whose regenerative ability is never turned off. The flatworm, for example, can regenerate its own head if it gets cut off, and it also shows no detectable aging. Lobsters are believed to be similar. (That's not to say it can't get caught and eaten for dinner.)

"These insights open the door to intervention by the transfer of telomerase into the cells of the body, or understanding how regeneration gets turned off, and then turning it back on," West says. "That's well within the power of modern medical research to understand."

3) Companies are investing tremendous resources into the anti-aging gold rush.

Devising interventions is the mission of AgeX, a subsidiary of BioTime, as well as a number of other companies.

"We're seeing a mad rush," West says. There's Google's Calico, which recently announced, with AbbVie Inc., another $1 billion into research for age-related diseases, on top of the previous $1.5 billion investment.

Other notable players include Unity Biotechnology, Samumed, Human Longevity Inc., RestorBio, Rejuvenate Bio,and Juvenescence (which is also an investor in AgeX).

"These are products in development by our company and others that the baby boomers can reasonably anticipate being available within their lifetimes."

4) The majority of clinical applications are still years away.

"What we've learned about turning back on this regenerative state, called induced tissue regeneration, is that the majority of the clinical implications are years away and will require years of clinical trials before potential FDA approval and marketing to the public," West says. "But we have found some potential near-term applications that we think may have a much faster track to commercialization. As you can imagine, we are all over those."

BioTime, Inc., AgeX's parent, has a regenerative medicine product in clinical trials for age-related macular degeneration, the leading cause of blindness in an aging population. While not yet approved by the FDA, BioTime has reported continued progress in the clinical development of the product now in Phase II trials.

Dr. Michael West, CEO of AgeX

(Courtesy)

Citi recently issued a major report, Disruptive Innovations VI, that included "Anti-Aging Medicines" as the number two innovation for investors to keep an eye on, and predicted that the first anti-aging therapies could receive regulatory approval by 2023.

5) Few, if any, medical interventions are available today that are proven to markedly slow aging - yet. But the Baby Boomers are not necessarily out of luck.

Buyer beware of any claims in the marketplace that a given skin cream or stem cell product will extend your life. More than likely, they won't.

"There are a lot of people trying to cash in on the aging baby boom population," West warns.

"When you hear claims of stem cell products that you can get now, it's important to understand that they are likely not based on pluripotent stem cell technology. Also, they are usually not products approved by the FDA, having gone through clinical trials to demonstrate safety and efficacy."

However, an array of young pluripotent stem cell-derived therapies are on a development track for future approvals.

One example is another program at AgeX: the manufacture of brown fat cells; these cells burn calories rather than store them. They burn circulating fat like triglycerides and sugar in the blood and generate heat.

"You lose brown fat in aging, and animal models suggest that if you restore that tissue, you can restore a metabolic balance to be more like what you had when you were young," says West. "When I was 18, I could drink milkshakes all day long and not gain an ounce. But at 50 or 60, most of us would rapidly put on weight. Why? We believe that one important factor is that with age, you lose this brown fat tissue. The loss throws your metabolism off balance. So the solution is conceptually simple, we plan to make young brown fat cells for transplantation to reset the balance, potentially to treat Type II diabetes or even obesity.

"These are products in development by our company and others that the baby boomers can reasonably anticipate being available within their lifetimes."

6) There is an ethical debate about how far to apply this new science.

Some people are speculating about whether genetic engineering might one day be used to program longer lifespans into humans at the earliest stages of development. (Note: it is against the law across the Western world to edit human embryos intended for reproduction, although just last week, Chinese scientists used CRISPR to repair a disease-causing mutation in viable human embryos.)

West sounds a cautionary note about such interventions meant to lengthen life. "For people who think not just about the science, but the ethics, safety is a major concern. It's entirely possible to genetically engineer babies, but when you make such modifications, it's an experiment, not just in human cells in a dish, but in a human being. I have a great reticence to put any human at risk unless it's a case where the person is suffering with a life-threatening disease, and the potential therapy is their last best hope."

"I have no doubt, zero doubt, that in the foreseeable future, we'll hear of a person who has lived to about 150."

7) The biggest challenge of intervening in human aging is cultural denial.

"The prospect of intervening in a profound way in human aging is still not seen as credible by the vast majority of thoughtful people around the world," West laments.

"Aging is a universal phenomenon, it's mankind's greatest enemy, but as a species we've adapted to the realities of finite lifespans and death. We have a whole infrastructure of belief systems around this, and many people see it as inevitable."

8) The lifespan for healthy children born today could surpass anything humanity has ever seen.

"It is at least 150 years of age," West predicts. "I have no doubt, zero doubt, that in the foreseeable future, we'll hear of a person who has lived to about 150. We know now it's possible. I've never said that publicly before, but I am comfortable now with the prediction. And, of course, if some people now living could live to 150 years of age, we have the prospect of them living to see even more powerful therapies. So, the question now is, what kind of a world are we going to make for future generations?"

[Editor's Note: Check out our latest video, which was inspired by Dr. West's exclusive prediction to leapsmag.]

Kira Peikoff
Kira Peikoff is a journalist whose work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and son.