Scientists Used Fruit Flies to Quickly Develop a Personalized Cancer Treatment for a Dying Man
Genetically engineered fruit flies are being used in early research to screen novel combinations of cancer drugs for individual patients.
Imagine a man with colorectal cancer that has spread throughout his body. His tumor is not responding to traditional chemotherapy. He needs a radically effective treatment as soon as possible and there's no time to wait for a new drug or a new clinical trial.
A plethora of novel combinations of treatments can be screened quickly on as many as 400,000 flies at once.
This was the very real, and terrifying, situation of a recent patient at Mount Sinai Medical Center in New York City. So his doctors turned to a new tactic to speed up the search for a treatment that would save him: Fruit flies.
Yes, fruit flies. Those annoying little buggers that descend on opened food containers are actually leading scientists to fully personalized cancer treatments. Oncology advances often are more about about utilizing old drugs in new combinations than about adding new drugs. But classically, the development of each new chemotherapy drug combination has required studies involving numerous patients spread over many years or decades.
With the fruit fly method, however, a novel treatment -- in the sense that a particular combination of drugs and the timing of their administration has never been used before -- is developed for each patient, almost like on Star Trek, when, faced suddenly with an unknown disease, a futuristic physician researches it and develops a cure quickly enough to save the patient's life.
How It Works
Using genetic engineering techniques, researchers produce a population of fruit fly embryos, each of which is programmed to develop a replica of the patient's cancer.
Since a lot of genetically identical fly embryos can be created, and since they hatch from eggs within 30 hours and then mature within days, a plethora of novel combinations of treatments can be screened quickly on as many as 400,000 flies at once. Then, only the regimens that are effective are administered to the patient.
Biotech entrepreneur Laura Towart, CEO of the UK- and Ireland-based company, My Personal Therapeutics, is partnering with Mount Sinai to develop and test the fruit fly tactic. The researchers recently published a paper demonstrating that the tumor of the man with metastatic colorectal cancer had shrunk considerably following the treatment, and remained stable for 11 months, although he eventually succumbed to his illness.
Open Questions
Cancer is in fact many different diseases, even if it strikes two people in the same place, and both cancers look the same under a microscope. At the level of DNA, RNA, proteins, and other molecular factors, each cancer is unique – and may require a unique treatment approach.
Determining the true impact on cancer mortality will require clinical trials involving many more patients.
"Anatomy of a cancer still plays a major role, if you're a surgeon or radiation oncologist, but the medical approach to cancer therapy is moving toward treatments that are personalized based on other factors," notes Dr. Howard McLeod, an internationally recognized expert on cancer genetics at the Moffitt Cancer Center, in Tampa, Florida. "We are also headed into an era when even the methods for monitoring patients are individualized."
One big unresolved question about the fruit fly screening approach is how effective it will be in terms of actually extending life. Determining the true impact on cancer mortality will require clinical trials involving many more patients.
Next Up
Using machine learning and artificial intelligence, Towart is now working to build a service called TuMatch that will offer rapid and affordable personalized treatment recommendations for all genetically driven cancers. "We hope to have TuMatch available to patients with colorectal/GI cancers by January 2020," she says. "We are also offering [the fruit fly approach] for patients with rare genetic diseases and for patients who are diabetic."
Are Towart's fruit flies the answer to why the man's tumor shrunk? To be sure, the definitive answer will come from further research that is expected soon, but it's also clear that, prior to the treatment, there was nothing left to do for that particular patient. Thus, although it's early in the game, there's a pretty good rationale for optimism.
On left, people excitedly line up for Salk's polio vaccine in 1957; on right, Joe Biden gets one of the COVID vaccines on December 21, 2020.
On the morning of April 12, 1955, newsrooms across the United States inked headlines onto newsprint: the Salk Polio vaccine was "safe, effective, and potent." This was long-awaited news. Americans had limped through decades of fear, unaware of what caused polio or how to cure it, faced with the disease's terrifying, visible power to paralyze and kill, particularly children.
The announcement of the polio vaccine was celebrated with noisy jubilation: church bells rang, factory whistles sounded, people wept in the streets. Within weeks, mass inoculation began as the nation put its faith in a vaccine that would end polio.
Today, most of us are blissfully ignorant of child polio deaths, making it easier to believe that we have not personally benefited from the development of vaccines. According to Dr. Steven Pinker, cognitive psychologist and author of the bestselling book Enlightenment Now, we've become blasé to the gifts of science. "The default expectation is not that disease is part of life and science is a godsend, but that health is the default, and any disease is some outrage," he says.
The Rise and Fall of Public Trust
<p>When the polio vaccine was released in 1955, "we were nearing an all-time high point in public trust," says Matt Baum, Harvard Kennedy School professor and lead author of <a href="http://www.kateto.net/covid19/COVID19%20CONSORTIUM%20REPORT%2013%20TRUST%20SEP%202020.pdf" target="_blank" rel="noopener noreferrer"><u>several</u></a> <a href="https://shorensteincenter.org/wp-content/uploads/2020/09/COVID19-CONSORTIUM-REPORT-14-MISINFO-SEP-2020.pdf" target="_blank" rel="noopener noreferrer"><u>reports</u></a> measuring public trust and vaccine confidence. Baum explains that the U.S. was experiencing a post-war boom following the Allied triumph in WWII, a popular Roosevelt presidency, and the rapid innovation that elevated the country to an international superpower.</p><p> The 1950s witnessed the emergence of nuclear technology, a space program, and unprecedented medical breakthroughs, adds Emily Brunson, Texas State University anthropologist and co-chair of the Working Group on Readying Populations for COVID-19 Vaccine. "Antibiotics were a game changer," she states. While before, people got sick with pneumonia for a month, suddenly they had access to pills that accelerated recovery. </p><p>During this period, science seemed to hold all the answers; people embraced the idea that we could "come to know the world with an absolute truth," Brunson explains. Doctors were portrayed as unquestioned gods, so Americans were primed to trust experts who told them the polio vaccine was safe. </p>The Shift in How We Consume Information
<p>In the 1950s, the media created an informational consensus. The fundamental ideas the public consumed about the state of the world were unified. "People argued about the best solutions, but didn't fundamentally disagree on the factual baseline," says Baum. Indeed, the messaging around the polio vaccine was centralized and consistent, led by President Roosevelt's successful <a href="https://files.eric.ed.gov/fulltext/EJ978264.pdf" target="_blank" rel="noopener noreferrer"><u>March of Dimes crusade</u></a>. People of lower socioeconomic status with limited access to this information were <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1551508/?page=3" target="_blank" rel="noopener noreferrer"><u>less likely to have confidence</u></a> in the vaccine, but most people consumed <a href="https://www.c-span.org/video/?506891-1/a-special-report-polio" target="_blank" rel="noopener noreferrer"><u>media that assured them</u></a> of the vaccine's safety and <a href="https://www.cbsnews.com/news/the-salk-polio-vaccine-greatest-public-health-experiment-in-history/" target="_blank" rel="noopener noreferrer"><u>mobilized them</u></a> to receive it. </p><p>Today, the information we consume is no longer centralized—in fact, just the opposite. "When you take that away, it's hard for people to know what to trust and what not to trust," Baum explains. We've witnessed an increase in polarization and the technology that makes it easier to give people what they want to hear, reinforcing the human tendencies to vilify the other side and reinforce our preexisting ideas. When information is engineered to further an agenda, each choice and risk calculation made while navigating the COVID-19 pandemic <a href="https://www.nytimes.com/2020/12/19/opinion/sunday/coronavirus-science.html?referringSource=articleShare" target="_blank" rel="noopener noreferrer"><u>is deeply politicized</u></a>. </p><p>This polarization maps onto a rise in socioeconomic inequality and economic uncertainty. These factors, associated with a sense of lost control, prime people to embrace misinformation, explains Baum, especially when the situation is difficult to comprehend. "The beauty of conspiratorial thinking is that it provides answers to all these questions," he says. Today's insidious fragmentation of news media accelerates the circulation of mis- and disinformation, reaching more people faster, regardless of veracity or motivation. In the case of vaccines, skepticism around their origin, safety, and motivation is intensified. </p><p>Alongside the rise in polarization, Pinker says "the emotional tone of the news has gone downward since the 1940s, and journalists consider it a professional responsibility to cover the negative." Relentless focus on everything that goes wrong further erodes public trust and paints a picture of the world getting worse. "Life saved is not a news story," says Pinker, but perhaps it should be, he continues. "If people were more aware of how much better life was generally, they might be more receptive to improvements that will continue to make life better. These improvements don't happen by themselves."</p>The Future Depends on Vaccine Confidence
<p>So far, the U.S. has been unable to mitigate the catastrophic effects of the pandemic through social distancing, testing, and contact tracing. President Trump has <a href="https://www.washingtonpost.com/politics/bob-woodward-rage-book-trump/2020/09/09/0368fe3c-efd2-11ea-b4bc-3a2098fc73d4_story.html" target="_blank" rel="noopener noreferrer"><u>downplayed the effects and threat of the virus</u></a>, <a href="https://www.washingtonpost.com/outlook/2020/07/14/cdc-directors-trump-politics/" target="_blank" rel="noopener noreferrer"><u>censored experts and scientists</u></a>, <a href="https://www.theatlantic.com/science/archive/2020/06/america-giving-up-on-pandemic/612796/" target="_blank" rel="noopener noreferrer"><u>given up on containing the spread</u></a>, and <a href="https://www.nytimes.com/2020/09/16/world/covid-coronavirus.html" target="_blank" rel="noopener noreferrer"><u>mobilized his base to protest masks</u></a>. The Trump Administration failed to devise a national plan, so our national plan has defaulted to hoping for the <a href="https://www.politico.com/news/2020/08/26/nation-of-miracles-pence-coronavirus-vaccine-rnc-402949" target="_blank" rel="noopener noreferrer"><u>"miracle" of a vaccine</u></a>. And they are "something of a miracle," Pinker says, describing vaccines as "the most benevolent invention in the history of our species." In record-breaking time, three vaccines have arrived. But their impact will be weakened unless we achieve mass vaccination. As Brunson notes, "The technology isn't the fix; it's people taking the technology."</p><p> Significant challenges remain, including facilitating widespread access and supporting on-the-ground efforts to allay concerns and build trust with <a href="https://www.newyorker.com/news/daily-comment/african-american-resistance-to-the-covid-19-vaccine-reflects-a-broader-problem" target="_blank" rel="noopener noreferrer"><u>specific populations with historic reasons for distrust</u></a>, says Brunson. Baum predicts continuing delays as well as deaths from other causes that will be linked to the vaccine. </p><p> Still, there's every reason for hope. The new administration "has its eyes wide open to these challenges. These are the kind of problems that are amenable to policy solutions if we have the will," Baum says. He forecasts widespread vaccination by late summer and a bounce back from the economic damage, a "Good News Story" that will bolster vaccine acceptance in the future. And Pinker reminds us that science, medicine, and public health have greatly extended our lives in the last few decades, a trend that can only continue if we're willing to roll up our sleeves. </p>Scientists Working to Develop Clever Nasal Spray That Tricks the Coronavirus Out of the Body
Biochemist Longxing Cao is working with colleagues at the University of Washington on promising research to disable infectious coronavirus in a person's nose.
Imagine this scenario: you get an annoying cough and a bit of a fever. When you wake up the next morning you lose your sense of taste and smell. That sounds familiar, so you head to a doctor's office for a Covid test, which comes back positive.
Your next step? An anti-Covid nasal spray of course, a "trickster drug" that will clear the once-dangerous and deadly virus out of the body. The drug works by tricking the coronavirus with decoy receptors that appear to be just like those on the surface of our own cells. The virus latches onto the drug's molecules "thinking" it is breaking into human cells, but instead it flushes out of your system before it can cause any serious damage.
This may sounds like science fiction, but several research groups are already working on such trickster coronavirus drugs, with some candidates close to clinical trials and possibly even becoming available late this year. The teams began working on them when the pandemic arrived, and continued in lockdown.
Biochemist David Baker, pictured in his lab at the University of Washington.
UW