Scientists Attempt to Make Human Cells Resistant to Coronaviruses and Ebola
Scientists are experimenting with turning certain genes on and off to make cells better fight viral infection.
Under the electronic microscope, the Ebola particles looked like tiny round bubbles floating inside human cells. Except these Ebola particles couldn't get free from their confinement.
They were trapped inside their bubbles, unable to release their RNA into the human cells to start replicating. These cells stopped the Ebola infection. And they did it on their own, without any medications, albeit in a petri dish of immunologist Adam Lacy-Hulbert. He studies how cells fight infections at the Benaroya Research Institute in Seattle, Washington.
These weren't just any ordinary human cells. They had a specific gene turned on—namely CD74, which typically wouldn't be on. Lacy-Hulbert's team was experimenting with turning various genes on and off to see what made cells fight viral infections better. One particular form of the CD74 gene did the trick. Normally, the Ebola particles would use the cells' own proteases—enzymes that are often called "molecular scissors" because they slice proteins—to cut the bubbles open. But CD74 produced a protein that blocked the scissors from cutting the bubbles, leaving Ebola trapped.
A New Frontier in the Making
<p>The idea of making human cells genetically resistant to infections—and possibly other stressors like cancer or aging—has been considered before. It is the concept behind the Genome Project-write or <a href="https://engineeringbiologycenter.org/" target="_blank" rel="noopener noreferrer"><u>GP-write project</u></a>, which aims to create "ultra-safe" versions of human cells that resist a variety of pathogens by way of "recoding" or rewriting the cells' genes.<br></p><p>To build proteins, cells use combinations of three DNA bases called codons to represent amino acids—the proteins' building blocks. But biologists find that many of the codons are redundant so if they were removed from all genes, the human cells would still make all their proteins. However, the viruses, whose genes would still include these eliminated redundant codons, would no longer successfully be able to replicate inside human cells. </p><p>In 2016, the GP-Write team successfully reduced the number of <a href="https://science.sciencemag.org/content/353/6301/819.full" target="_blank" rel="noopener noreferrer"><u><em>Escherichia coli's</em> codons from 64 to 57</u></a>. Recoding genes in all human cells would be harder, but some recoded cells may be transplanted into the body, says Harvard Medical School geneticist George Church, the GP-Write core founding member. </p><p>"You can recode a subset of the body, such as all of your blood," he says. "You can also grow an organ inside a recoded pig and transplant it." </p><p>Church adds that these methods are still in stages that are too early to help us with this pandemic.</p>LeapsMag exclusively interviewed Church in 2019 about his latest progress with DNA recoding:
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="69c0097cffe4901c23314f01f779e129"><iframe lazy-loadable="true" src="https://www.youtube.com/embed/IjjSg8ED0Jw?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>The Push for Clinical Trials
<p>In the meantime, interferons may prove an easier medicine. Lacy-Hulbert thinks that interferon gamma might play a role in activating the CD74 gene, which gums up the molecular scissors. There also may be other ways to activate that gene. "So we are now thinking, can we develop a drug that mimics that actual activity?" he says.<br></p><p>Some interferons are already manufactured and used for treating certain diseases, including multiple sclerosis. Theoretically, nothing prevents doctors from prescribing interferons to Covid patients, but it must be done in the early stages of infection—to stimulate genes that trigger cellular defenses before the virus invades too many cells and before the immune systems mobilizes its big guns.</p><p>"If my father who is 70 years old tests positive, I would recommend he takes interferon as early as possible," says Zhang. But to make it a mainstream practice, doctors need clear prescription guidelines. "What would really help doctors make these decisions is clinical trials," says Casanova, so that such guidelines can be established. "We are now starting to push for clinical trials," he adds.</p>On left, people excitedly line up for Salk's polio vaccine in 1957; on right, Joe Biden gets one of the COVID vaccines on December 21, 2020.
On the morning of April 12, 1955, newsrooms across the United States inked headlines onto newsprint: the Salk Polio vaccine was "safe, effective, and potent." This was long-awaited news. Americans had limped through decades of fear, unaware of what caused polio or how to cure it, faced with the disease's terrifying, visible power to paralyze and kill, particularly children.
The announcement of the polio vaccine was celebrated with noisy jubilation: church bells rang, factory whistles sounded, people wept in the streets. Within weeks, mass inoculation began as the nation put its faith in a vaccine that would end polio.
Today, most of us are blissfully ignorant of child polio deaths, making it easier to believe that we have not personally benefited from the development of vaccines. According to Dr. Steven Pinker, cognitive psychologist and author of the bestselling book Enlightenment Now, we've become blasé to the gifts of science. "The default expectation is not that disease is part of life and science is a godsend, but that health is the default, and any disease is some outrage," he says.
The Rise and Fall of Public Trust
<p>When the polio vaccine was released in 1955, "we were nearing an all-time high point in public trust," says Matt Baum, Harvard Kennedy School professor and lead author of <a href="http://www.kateto.net/covid19/COVID19%20CONSORTIUM%20REPORT%2013%20TRUST%20SEP%202020.pdf" target="_blank" rel="noopener noreferrer"><u>several</u></a> <a href="https://shorensteincenter.org/wp-content/uploads/2020/09/COVID19-CONSORTIUM-REPORT-14-MISINFO-SEP-2020.pdf" target="_blank" rel="noopener noreferrer"><u>reports</u></a> measuring public trust and vaccine confidence. Baum explains that the U.S. was experiencing a post-war boom following the Allied triumph in WWII, a popular Roosevelt presidency, and the rapid innovation that elevated the country to an international superpower.</p><p> The 1950s witnessed the emergence of nuclear technology, a space program, and unprecedented medical breakthroughs, adds Emily Brunson, Texas State University anthropologist and co-chair of the Working Group on Readying Populations for COVID-19 Vaccine. "Antibiotics were a game changer," she states. While before, people got sick with pneumonia for a month, suddenly they had access to pills that accelerated recovery. </p><p>During this period, science seemed to hold all the answers; people embraced the idea that we could "come to know the world with an absolute truth," Brunson explains. Doctors were portrayed as unquestioned gods, so Americans were primed to trust experts who told them the polio vaccine was safe. </p>The Shift in How We Consume Information
<p>In the 1950s, the media created an informational consensus. The fundamental ideas the public consumed about the state of the world were unified. "People argued about the best solutions, but didn't fundamentally disagree on the factual baseline," says Baum. Indeed, the messaging around the polio vaccine was centralized and consistent, led by President Roosevelt's successful <a href="https://files.eric.ed.gov/fulltext/EJ978264.pdf" target="_blank" rel="noopener noreferrer"><u>March of Dimes crusade</u></a>. People of lower socioeconomic status with limited access to this information were <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1551508/?page=3" target="_blank" rel="noopener noreferrer"><u>less likely to have confidence</u></a> in the vaccine, but most people consumed <a href="https://www.c-span.org/video/?506891-1/a-special-report-polio" target="_blank" rel="noopener noreferrer"><u>media that assured them</u></a> of the vaccine's safety and <a href="https://www.cbsnews.com/news/the-salk-polio-vaccine-greatest-public-health-experiment-in-history/" target="_blank" rel="noopener noreferrer"><u>mobilized them</u></a> to receive it. </p><p>Today, the information we consume is no longer centralized—in fact, just the opposite. "When you take that away, it's hard for people to know what to trust and what not to trust," Baum explains. We've witnessed an increase in polarization and the technology that makes it easier to give people what they want to hear, reinforcing the human tendencies to vilify the other side and reinforce our preexisting ideas. When information is engineered to further an agenda, each choice and risk calculation made while navigating the COVID-19 pandemic <a href="https://www.nytimes.com/2020/12/19/opinion/sunday/coronavirus-science.html?referringSource=articleShare" target="_blank" rel="noopener noreferrer"><u>is deeply politicized</u></a>. </p><p>This polarization maps onto a rise in socioeconomic inequality and economic uncertainty. These factors, associated with a sense of lost control, prime people to embrace misinformation, explains Baum, especially when the situation is difficult to comprehend. "The beauty of conspiratorial thinking is that it provides answers to all these questions," he says. Today's insidious fragmentation of news media accelerates the circulation of mis- and disinformation, reaching more people faster, regardless of veracity or motivation. In the case of vaccines, skepticism around their origin, safety, and motivation is intensified. </p><p>Alongside the rise in polarization, Pinker says "the emotional tone of the news has gone downward since the 1940s, and journalists consider it a professional responsibility to cover the negative." Relentless focus on everything that goes wrong further erodes public trust and paints a picture of the world getting worse. "Life saved is not a news story," says Pinker, but perhaps it should be, he continues. "If people were more aware of how much better life was generally, they might be more receptive to improvements that will continue to make life better. These improvements don't happen by themselves."</p>The Future Depends on Vaccine Confidence
<p>So far, the U.S. has been unable to mitigate the catastrophic effects of the pandemic through social distancing, testing, and contact tracing. President Trump has <a href="https://www.washingtonpost.com/politics/bob-woodward-rage-book-trump/2020/09/09/0368fe3c-efd2-11ea-b4bc-3a2098fc73d4_story.html" target="_blank" rel="noopener noreferrer"><u>downplayed the effects and threat of the virus</u></a>, <a href="https://www.washingtonpost.com/outlook/2020/07/14/cdc-directors-trump-politics/" target="_blank" rel="noopener noreferrer"><u>censored experts and scientists</u></a>, <a href="https://www.theatlantic.com/science/archive/2020/06/america-giving-up-on-pandemic/612796/" target="_blank" rel="noopener noreferrer"><u>given up on containing the spread</u></a>, and <a href="https://www.nytimes.com/2020/09/16/world/covid-coronavirus.html" target="_blank" rel="noopener noreferrer"><u>mobilized his base to protest masks</u></a>. The Trump Administration failed to devise a national plan, so our national plan has defaulted to hoping for the <a href="https://www.politico.com/news/2020/08/26/nation-of-miracles-pence-coronavirus-vaccine-rnc-402949" target="_blank" rel="noopener noreferrer"><u>"miracle" of a vaccine</u></a>. And they are "something of a miracle," Pinker says, describing vaccines as "the most benevolent invention in the history of our species." In record-breaking time, three vaccines have arrived. But their impact will be weakened unless we achieve mass vaccination. As Brunson notes, "The technology isn't the fix; it's people taking the technology."</p><p> Significant challenges remain, including facilitating widespread access and supporting on-the-ground efforts to allay concerns and build trust with <a href="https://www.newyorker.com/news/daily-comment/african-american-resistance-to-the-covid-19-vaccine-reflects-a-broader-problem" target="_blank" rel="noopener noreferrer"><u>specific populations with historic reasons for distrust</u></a>, says Brunson. Baum predicts continuing delays as well as deaths from other causes that will be linked to the vaccine. </p><p> Still, there's every reason for hope. The new administration "has its eyes wide open to these challenges. These are the kind of problems that are amenable to policy solutions if we have the will," Baum says. He forecasts widespread vaccination by late summer and a bounce back from the economic damage, a "Good News Story" that will bolster vaccine acceptance in the future. And Pinker reminds us that science, medicine, and public health have greatly extended our lives in the last few decades, a trend that can only continue if we're willing to roll up our sleeves. </p>Scientists Working to Develop Clever Nasal Spray That Tricks the Coronavirus Out of the Body
Biochemist Longxing Cao is working with colleagues at the University of Washington on promising research to disable infectious coronavirus in a person's nose.
Imagine this scenario: you get an annoying cough and a bit of a fever. When you wake up the next morning you lose your sense of taste and smell. That sounds familiar, so you head to a doctor's office for a Covid test, which comes back positive.
Your next step? An anti-Covid nasal spray of course, a "trickster drug" that will clear the once-dangerous and deadly virus out of the body. The drug works by tricking the coronavirus with decoy receptors that appear to be just like those on the surface of our own cells. The virus latches onto the drug's molecules "thinking" it is breaking into human cells, but instead it flushes out of your system before it can cause any serious damage.
This may sounds like science fiction, but several research groups are already working on such trickster coronavirus drugs, with some candidates close to clinical trials and possibly even becoming available late this year. The teams began working on them when the pandemic arrived, and continued in lockdown.
Biochemist David Baker, pictured in his lab at the University of Washington.
UW