Prostate Cancer Treatments Are Racing Ahead. Here’s a Big Reason Why.

Dr. Stacy Loeb (left) and Dr. Heather Cheng were both recipients of a special early-career grant from the Prostate Cancer Foundation for young researchers.

(Photos courtesy of Loeb and Cheng)

In his lab at UCLA, Dr. Charles Sawyer discovered two drugs for metastatic prostate cancer that are now in routine use all over the world.

At the University of Washington at Seattle, Dr. Heather Cheng was part of a team that discovered the connection between BRCA2 mutations and advanced prostate cancer, and she recently opened a prostate cancer genetics clinic – a new frontier in the field.

At UT Southwestern Medical Center in Dallas, Dr. Nima Sharifi's pioneering research showed why certain drugs don't work in castrate-resistant prostate cancer, and now new therapies are being developed instead.

"We have good reason to believe that investing in young scientists is the way to go."

What Do These Researchers Share in Common?

They were all under 40 when they received a special grant for early-career scientists from the Prostate Cancer Foundation, the leading philanthropic organization that funds prostate cancer research. Experts say that the foundation's dedicated support for young innovators has been a game changer in contributing to the discovery of newer and better therapies for prostate cancer patients.

Howard Soule, the foundation's Executive Vice President and Chief Science Officer, was aware that many of the people who leave behind major legacies in science typically make their discoveries before age 40, like Albert Einstein, who was in his thirties when he published his paper on general relativity.

So back in 2007, the PCF decided to ramp up its support for young researchers.

"We have good reason to believe that investing in young scientists is the way to go, so we've created a program at PCF that is I believe is unique in the field," says Soule.

The Young Investigator Awards Program rigorously screens a pool of roughly 150 applicants for 20 to 25 awards that consist of funding for three years – and that's just the start.

"It's much more than sending them money," says Soule. "We celebrate them at annual meetings, we have a networking center with no equal in the field, and throughout the years of their three-year-award and basically forever, we create community. We are a safe place for them to land, they share data with us that's unpublished, and we provide a lot of feedback and stewardship to their donors."

Spotlighting Recipients: From the Study of Tumors to Twitter

Heather Cheng was in her thirties when she received her award three years ago. "It's been very, very helpful in allowing me to do the type of work I am really excited about doing," she says.

At the time, she had recently joined the faculty at the University of Washington after completing an MD/PhD medical scientist training program, internal medicine residency and hematology/oncology fellowship, and she was considering what new direction to take in her research. Several patients captured her imagination who were diagnosed at a very young age with metastatic prostate cancer, and "even though we had cool new drugs to extend life, these particular patients' cancers blew through everything."

"This is a new intersection because genetics has not been discussed in the context of care for men with prostate cancer that much."

She decided to make a niche out of understanding the connection between often early-onset aggressive prostate cancer and familial genetic risk, in order to improve treatment options for these patients. In 2016, Cheng launched a new clinic and invited any men to visit who have a family history of cancer and who are interested in genetic testing, or who have a known mutation and want to learn about treatment opportunities, or who want to know if their cancer tumor can be inherited.

"It's an open door to have a discussion because the technology and treatment potentials are so new," Cheng says. "There's a lot to learn."

It used to be that a doctor would ask a male patient about his family history, and if a mother had breast cancer at a young age, for example, and several other family members met the criteria for a genetic risk, then perhaps the patient had inherited a mutation in a cancer risk gene. But what to do next was unclear.

Now, doctors are taking men with a diagnosis of prostate cancer, sequencing their inherited DNA or their tumors, and finding out if they have mutations that could guide their treatment plan. For example, medications called PARP inhibitors have shown encouraging early results for men with a BRCA2 gene mutation and are now in clinical trials for treating prostate cancer.

"This is a new intersection because genetics has not been discussed in the context of care for men with prostate cancer that much," Cheng says. "This has changed practice because changes to national cancer guidelines have happened in less than five years. The change has happened so quickly that the field is not completely prepared for implementation and clinical logistics."

Another young investigator, New York University urologist and prostate cancer researcher Stacy Loeb, received her award at age 36 two years ago. She realized that no one had scientifically studied how patients are using crowdsourcing platforms like GoFundMe and YouCaring to raise money for their treatments. In her research, she found that there are many more campaigns for breast cancer and that they are more successful in crowdfunding than the prostate cancer campaigns.

"We have identified some gaps in advocacy and awareness for prostate cancer – fewer people know about it or discuss it, but it is a leading cause of death of U.S. men, so it is important to get more people aware," Loeb notes.

In fact, today the PCF releases data from a survey of more than 2,000 U.S. adults that reveals widespread ignorance about the disease. Two-thirds of respondents, for example, did not know that men with early stage prostate cancer experience no symptoms, and many were unaware that screening begins with a simple blood test.

Besides studying patient behavior, Loeb also wanted to better understand how physicians and scientists are using social media, and how their participation on platforms like Twitter could be fostered to promote greater dissemination of knowledge. So she helped start a monthly prostate cancer journal club on Twitter, hosted through the PCF science account. The club features an important new research paper in the field each month, and she invites the authors of the paper to participate in a 48-hour online discussion.

"The Journal Club is a monthly thing at most institutions," she says, "but typically it's one institution with people from one department. What's better about this is we have people who are doctors, nurses, scientists, patients, stakeholders participating from all over the world."

Why Do Young Innovators Have an Edge?

The environment matters, for one.

"We all bring different life experiences to the table, we grew up in different eras, so we have different norms and tools at our disposal that weren't available," says Loeb, who was one of the early adopters of social media in the urology space. She now gives a lecture at the annual PCF retreat on how to use social media to advance one's scientific career.

"The more you're invested into a system, the less you may be able to recognize its limitations."

But the advantage of youth is not just greater familiarity with the newest tools. It's also the existential benefit of not being entrenched in the way it's always been.

"Often there is a healthy skepticism of what's come before," explains Dr. Joseph La Brie, a clinical psychologist and professor at psychology at Loyola Marymount University. "That's connected to not being wedded to a programmatic view of the problem. There's a freshness and creative outlook because they are looking at it with a new set of eyes, and there's a desire to make their mark on the field, to be unique and innovative and not just follow in somebody else's footsteps."

And as Cheng puts it, "The more you're invested into a system, the less you may be able to recognize its limitations."

But it's notoriously difficult for scientists to get funding for innovative ideas without having already published preliminary data, which is what the National Institutes of Health and other funding bodies like to see. Eliminating that hurdle is a big part of why PCF's approach has been so effective, according to a veteran of the field, Johns Hopkins urologist Dr. Kenneth Pienta; his own groundbreaking research has been supported by PCF since he was a young scientist in the '90s.

"Any granting mechanism that allows people to fund ideas without a lot of preliminary data is a good thing," he declares.

Support for creative young minds is crucial across all endeavors, beyond any single disease or discipline. At a recent conference showcasing emerging technology for DARPA, the research arm of the Defense Department, expert panelists in artificial intelligence were asked: What is the single most important thing to focus on over the next decade?

Robotics pioneer Dr. Rodney Brooks may have put it best: "Figure out how to fund some really radical young mavericks and see what happens."

Kira Peikoff
Kira Peikoff is a journalist whose work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and son.
Get our top stories twice a month
Follow us on

On left, people excitedly line up for Salk's polio vaccine in 1957; on right, Joe Biden gets one of the COVID vaccines on December 21, 2020.

Wikimedia Commons and Biden's Twitter

On the morning of April 12, 1955, newsrooms across the United States inked headlines onto newsprint: the Salk Polio vaccine was "safe, effective, and potent." This was long-awaited news. Americans had limped through decades of fear, unaware of what caused polio or how to cure it, faced with the disease's terrifying, visible power to paralyze and kill, particularly children.

The announcement of the polio vaccine was celebrated with noisy jubilation: church bells rang, factory whistles sounded, people wept in the streets. Within weeks, mass inoculation began as the nation put its faith in a vaccine that would end polio.

Today, most of us are blissfully ignorant of child polio deaths, making it easier to believe that we have not personally benefited from the development of vaccines. According to Dr. Steven Pinker, cognitive psychologist and author of the bestselling book Enlightenment Now, we've become blasé to the gifts of science. "The default expectation is not that disease is part of life and science is a godsend, but that health is the default, and any disease is some outrage," he says.

Keep Reading Keep Reading

Biochemist Longxing Cao is working with colleagues at the University of Washington on promising research to disable infectious coronavirus in a person's nose.


Imagine this scenario: you get an annoying cough and a bit of a fever. When you wake up the next morning you lose your sense of taste and smell. That sounds familiar, so you head to a doctor's office for a Covid test, which comes back positive.

Your next step? An anti-Covid nasal spray of course, a "trickster drug" that will clear the once-dangerous and deadly virus out of the body. The drug works by tricking the coronavirus with decoy receptors that appear to be just like those on the surface of our own cells. The virus latches onto the drug's molecules "thinking" it is breaking into human cells, but instead it flushes out of your system before it can cause any serious damage.

This may sounds like science fiction, but several research groups are already working on such trickster coronavirus drugs, with some candidates close to clinical trials and possibly even becoming available late this year. The teams began working on them when the pandemic arrived, and continued in lockdown.

Keep Reading Keep Reading
Lina Zeldovich
Lina Zeldovich has written about science, medicine and technology for Scientific American, Reader’s Digest, Mosaic Science and other publications. She’s an alumna of Columbia University School of Journalism and the author of the upcoming book, The Other Dark Matter: The Science and Business of Turning Waste into Wealth, from Chicago University Press. You can find her on and @linazeldovich.