How Genetic Engineering Could Save the Coral Reefs

CoralADJ

Underwater world with corals and tropical fish. (© BRIAN_KINNEY/Fotolia)

Coral reefs are usually relegated to bit player status in television and movies, providing splashes of background color for “Shark Week,” “Finding Nemo,” and other marine-based entertainment.

In real life, the reefs are an absolutely crucial component of the ecosystem for both oceans and land, rivaling only the rain forests in their biological complexity. They provide shelter and sustenance for up to a quarter of all marine life, oxygenate the water, help protect coastlines from erosion, and support thousands of tourism jobs and businesses.

Genetic engineering could help scientists rebuild the reefs that have been lost, and turn those still alive into a souped-up version that can withstand warmer and even more acidic waters.

But the warming of the world’s oceans — exacerbated by an El Nino event that occurred between 2014 and 2016 — has been putting the world’s reefs under tremendous pressure. Their vibrant colors are being replaced by sepulchral whites and tans.

That’s the result of bleaching — a phenomenon that occurs when the warming waters impact the efficiency of the algae that live within the corals in a symbiotic relationship, providing nourishment via photosynthesis and eliminating waste products. The corals will often “shuffle” their resident algae, reacting in much the same way a landlord does with a non-performing tenant — evicting them in the hopes of finding a better resident. But when better-performing algae does not appear, the corals become malnourished, eventually becoming  deprived of their color and then their lives.

The situation is dire: Two-thirds of Australia’s Great Barrier Reef have undergone a bleaching event in recent years, and it’s believed up to half of that reef has died.

Moreover, hard corals are the ocean’s redwood trees. They take centuries to grow, meaning it could take centuries or more to replace them.

Recent developments in genetic engineering — and an accidental discovery by researchers at a Florida aquarium — provide opportunities for scientists to potentially rebuild a large proportion of the reefs that have been lost, and perhaps turn those still alive into a souped-up version that can withstand warmer and even more acidic waters. But many questions have yet to be answered about both the biological impact on the world’s oceans, and the ethics of reengineering the linchpin of its ecosystem.

How did we get here?

Coral bleaching was a regular event in the oceans even before they began to warm. As a result, natural selection weeds out the weaker species, says Rachel Levin, an American-born scientist who has performed much of her graduate work in Australia. But the current water warming trend is happening at a much higher rate than it ever has in nature, and neither the coral nor the algae can keep up.

"There is a big concern about giving one variant a huge fitness advantage, have it take over and impact the natural variation that is critical in changing environments."

In a widely-read paper published last year in the journal Frontiers in Microbiology, Levin and her colleagues put forth a fairly radical notion for preserving the coral reefs: Genetically modify their resident algae.

Levin says the focus on algae is a pragmatic decision. Unlike coral, they reproduce extremely rapidly. In theory, a modified version could quickly inhabit and stabilize a reef. About 70 percent of algae — all part of the genus symbiodinium — are host generalists. That means they will insert themselves into any species of coral.

In recent years, work on mapping the genomes of both algae and coral has been progressing rapidly. Scientists at Stanford University have recently been manipulating coral genomes using larvae manipulated with the CRISPR/Cas9 technology, although the experimentation has mostly been limited to its fluorescence.

Genetically modifying the coral reefs could seem like a straightforward proposition, but complications are on the horizon. Levin notes that as many as 20 different species of algae can reside within a single coral, so selecting the best ones to tweak may pose a challenge.

“The entire genus is made up of thousands of subspecies, all very genetically distinct variants. There is a huge genetic diversity, and there is a big concern about giving one variant a huge fitness advantage, have it take over and impact the natural variation that is critical in changing environments,” Levin says.

Genetic modifications to an algae’s thermal tolerance also poses the risk of what Levin calls an “off-target effect.” That means a change to one part of the genome could lead to changes in other genes, such as those regulating growth, reproduction, or other elements crucial to its relationship with coral.

Phillip Cleves, a postdoctoral researcher at Stanford who has participated in the CRISPR/Cas9 work, says that future research will focus on studying the genes in coral that regulate the relationship with the algae. But he is so concerned about the ethical issues of genetically manipulating coral to adapt to a changing climate that he declined to discuss it in detail. And most coral species have not yet had their genomes fully mapped, he notes, suggesting that such work could still take years.

An Alternative: Coral Micro-fragmentation

In the meantime, there is another technique for coral preservation led by David Vaughan, senior scientist and program manager at the Mote Marine Laboratory and Aquarium in Sarasota, Florida.

Vaughan’s research team has been experimenting in the past decade with hard coral regeneration. Their work had been slow and painstaking, since growing larvae into a coral the size of a quarter takes three years.

The micro-fragmenting process in some ways raises fewer ethical questions than genetically altering the species.

But then, one day in 2006, Vaughan accidentally broke off a tiny piece of coral in the research aquarium. That fragment grew to the size of a quarter in three months, apparently the result of the coral’s ability to rapidly regenerate when injured. Further research found that breaking coral in this manner — even to the size of a single polyp — led to rapid growth in more than two-dozen species.

Mote is using this process, known as micro-fragmentation, to grow large numbers of coral rapidly, often fusing them on top of larger pieces of dead coral. These coral heads are then planted in the Florida Keys, which has experienced bleaching events over 12 of the last 14 years. The process has sped up almost exponentially; Mote has planted some 36,000 pieces of coral to date, but Vaughan says it’s on track to plant 35,000 more pieces this year alone. That sum represents between 20 to 30 acres of restored reef. Mote is on track to plant another 100,000 pieces next year.

This rapid reproduction technique in some ways allows Mote scientists to control for the swift changes in ocean temperature, acidification and other factors. For example, using surviving pieces of coral from areas that have undergone bleaching events means these hardier strains will propagate much faster than nature allows.

Vaughan recently visited the Yucatan Peninsula to work with Mexican researchers who are going to embark on a micro-fragmenting initiative of their own.

The micro-fragmenting process in some ways raises fewer ethical questions than genetically altering the species, although Levin notes that this could also lead to fewer varieties of corals on the ocean floor — a potential flattening of the colorful backdrops seen in television and movies.

But Vaughan has few qualms, saying this is an ecological imperative. He suggests that micro-fragmentation could serve as a stopgap until genomic technologies further advance.

“We have to use the technology at hand,” he says. “This is a lot like responding when a forest burns down. We don’t ask questions. We plant trees.”

What do you think?

We welcome all thoughts, feedback and constructive critiques: editor@leapsmag.com.
A curated selection of responses are collected here.