As We Wait for a Vaccine, Scientists Work to Scale Up the Best COVID-19 Antibodies to Give New Patients

antibodiespic

In this illustration of immune defense, Y-shaped proteins called antibodies attack a virus. (© Siarhei/Adobe)

When we get sick, our immune system sends its soldier cells to the battlefield. Called B-cells, they “examine” the foreign particles that shouldn’t be in our bloodstream—and start producing the antibodies, the proteins to neutralize the invaders.

To screen the antibodies, scientists have developed a proprietary way to make the effective ones glow – like a literal “lightbulb” moment.

The better these antibodies are at neutralizing the pathogen, the faster we recover.

The antibodies acquired from COVID-19 survivors already showed promise in treating other patients, but because they must be obtained from people, generating a regular supply is not feasible. To close the gap, researchers are trying to identify the B-cells that make the best antibodies—and then farm them in laboratories at scale. 

Scientists at Berkley Lights, a biotechnology company in California, have been screening B-cells from recovered patients and testing the antibodies they release for virus-neutralizing abilities. To screen the antibodies, scientists there have developed a proprietary way to make the effective ones glow – like a literal “lightbulb” moment. 

So how does it work? First, the individual B-cells are placed into microscopic chambers called nano-pens, where they secrete the antibodies. Once released, the antibodies are flushed over tiny beads that have bits of the viral particles attached to them, along with special molecules that can emit fluorescent light.  

“When an antibody binds to the bead, we see a bright light on the bead,” explains John Proctor, the company’s senior vice president of antibody therapeutics. “So we can identify which cells are making the antibodies.”

Then the antibodies are tested for their ability to counteract the coronavirus’s spike proteins, which the virus uses to break into our cells. Not all antibodies are equally good at this crucial defense move—some can block only parts of the virus’s machinery, while others can neutralize it completely. Proctor and his colleagues are looking for the latter.  

Once scientists identify the best performing B-cells, they crack the cells open—or in scientific terms “lyse” them—and extract the genetic instructions for making the antibodies. As it turns out, B-cells aren’t very efficient at pumping out massive amounts of antibodies, so scientists insert these genetic instructions into a different, more prolific type of cell. 

Named Chinese Hamster Ovary Cells or CHO, these cells are commonly used in the pharmaceutical industry because they can generate therapeutic proteins en masse. Under the right nutrient conditions, which include a lot of sugar, CHO cells can keep making the antibodies at commercial levels. “They are engineered to operate in very large bioreactors,” Proctor explains. 

While traditional antibody screening can take three months, the Beacon System can do it in less than 24 hours.

Berkeley Lights’ technology has already been used to screen the antibodies of recovered patients from Vanderbilt University Medical Center. In another example, a biotech company GenScript ProBio used the platform to screen mice engineered to have human antibodies for the coronavirus. 

In addition to its small, lab-on-a-chip size, Berkeley Lights’ system allows scientists to greatly speed up the screening process. While traditional antibody screening can take three months, the Beacon System can do it in less than 24 hours. “We only need one B-cell per pen and a couple of beads to see that fluorescent signal,” Proctor says. “It is a more advanced way to process and analyze cells, and that level of sensitivity is unique to our technology.” 

Assay with Inset

B-cells secreting antibodies inside the Berkeley Lights Beacon System Nano-Pens. (Image Credit: the Australian Institute for Bioengineering & Nanotechnology at The University of Queensland)

While vaccines are likely to take months to develop and test, antibodies might arrive to the battleground sooner. With the extremely limited treatment options for COVID-19, antibody-based therapeutics can potentially bridge this gap.

What do you think?

We welcome all thoughts, feedback and constructive critiques: editor@leapsmag.com.
A curated selection of responses are collected here.