3 Futuristic Biotech Programs the U.S. Government Is Funding Right Now

DARPA2PIcADJ

Biomedical engineer Kevin Zhao has a sensor in his arm and his chest that monitors his oxygen level in those tissues in real time. (Photo Credit: Kira Peikoff)

Last month, at a conference celebrating DARPA, the research arm of the Defense Department, FBI Special Agent Edward You declared, “The 21st century will be the revolution of the life sciences.”

Biomedical engineer Kevin Zhao has a sensor in his arm and chest that monitors his oxygen level in real time.

Indeed, four years ago, the agency dedicated a new office solely to advancing biotechnology. Its primary goal is to combat bioterrorism, protect U.S. forces, and promote warfighter readiness. But its research could also carry over to improve health care for the general public.

With an annual budget of about $3 billion, DARPA’s employees oversee about 250 research and development programs, working with contractors from corporations, universities, and government labs to bring new technologies to life.

Check out these three current programs:

1) IMPLANTABLE SENSORS TO MEASURE OXYGEN, LACTATE, AND GLUCOSE LEVELS IN REAL TIME

Biomedical engineer Kevin Zhao has a sensor in his arm and his chest that monitors his oxygen level in those tissues in real time. With funding from DARPA for the program “In Vivo Nanoplatforms,” he developed soft, flexible hydrogels that are injected just beneath the skin to perform the monitoring and that sync to a smartphone app to give the user immediate health insights.

A first-in-man trial for the glucose sensor is now underway in Europe for monitoring diabetics, according to Zhao. Volunteers eat sugary food to spike their glucose levels and prompt the monitor to register the changes.

“If this pans out, with approval from FDA, then consumers could get the sensors implanted in their core to measure their levels of glucose, oxygen, and lactate,” Zhao said.

Lactate, especially, interests DARPA because it’s a first responder molecule to the onset of trauma, sepsis, and potentially infection.

“The sensor could potentially detect rise of these [body chemistry numbers] and alert the user to prevent onset of dangerous illness.”

2) NEAR INSTANTANEOUS VACCINE PROTECTION DURING A PANDEMIC

Traditional vaccines can take months or years to develop, then weeks to become effective once you get it. But when an unknown virus emerges, there’s no time to waste.

This program, called P3, envisions a much more ambitious approach to stop a pandemic in its tracks.

“We want to confer near instantaneous protection by doing it a different way – enlist the body as a bioreactor to produce therapeutics,” said Col. Matthew Hepburn, the program manager.

So how would it work?

To fight a pandemic, we will need 20,000 doses of a vaccine in 60 days.

If you have antibodies against a certain infection, you’ll be protected against that infection. This idea is to discover the genetic code for the antibody to a specific pathogen, manufacture those pieces of DNA and RNA, and then inject the code into a person’s arm so the muscle cells will begin producing the required antibodies.

“The amazing thing is that it actually works, at least in animal models,” said Hepburn. “The mouse muscles made enough protective antibodies so that the mice were protected.”

The next step is to test the approach in humans, which the program will do over the next two years.

But the hard part is actually not discovering the genetic code for highly potent antibodies, according to Hepburn. In fact, researchers already have been able to do so in two to four weeks’ time.

“The hard part is once I have an antibody, a large pharma company will say in 2 years, I can make 100-200 doses. Give us 4 years to get to 20,000 doses. That’s not good enough,” Hepburn said.

To fight a pandemic, we will need 20,000 doses of a vaccine in 60 days.

“We have to fundamentally change the idea that it takes a billion dollars and ten years to make a drug,” he concluded. “We’re going to do something radically different.”

3) RAPID DIAGNOSING OF PATHOGEN EXPOSURE THROUGH EPIGENETICS

Imagine that you come down with a mysterious illness. It could be caused by a virus, bacteria, or in the most extreme catastrophe, a biological agent from a weapon of mass destruction.

What if a portable device existed that could identify–within 30 minutes—which pathogen you have been exposed to and when? It would be pretty remarkable for soldiers in the field, but also for civilians seeking medical treatment.

This is the lofty ambition of a DARPA program called Epigenetic Characterization and Observation, or ECHO.

Its success depends on a biological phenomenon known as the epigenome. While your DNA is relatively immutable, your environment can modify how your DNA is expressed, leaving marks of exposure that register within seconds to minutes; these marks can persist for decades. It’s thanks to the epigenome that identical twins – who share identical DNA – can differ in health, temperament, and appearance.

10.1038_ng0994-59_mid_1

These three mice are genetically identical. Epigenetic differences, however, result in vastly different observed characteristics. (© 1994 Nature Publishing Group Duhl, D. et al. Neomorphic agouti mutations in obese yellow mice. Nature Genetics 8, 60.)

Reading your epigenetic marks could theoretically reveal a time-stamped history of your body’s environmental exposures.

Researchers in the ECHO program plan to create a database of signatures for exposure events, so that their envisioned device will be able to quickly scan someone’s epigenome and refer to the database to sort out a diagnosis.

“One difficult part is to put a timestamp on this result, in addition to the sign of which exposure it was — to tell us when this exposure happened,” says Thomas Thomou, a contract scientist who is providing technical assistance to the ECHO program manager.

Other questions that remain up in the air for now: Do all humans have the same epigenetic response to the same exposure events? Is it possible to distinguish viral from bacterial exposures? Does dose and duration of exposure affect the signature of epigenome modification?

The program will kick off in January 2019 and is planned to last four years, as long as certain milestones of development are reached along the way. The desired prototype would be a simple device that any untrained person could operate by taking a swab or a fingerprick.

“In an outbreak,” says Dr. Thomou, “it will help everyone on the ground immediately to have a rapidly deployable machine that will give you very quick answers to issues that could have far-reaching ramifications for public health safety.”

What do you think?

We welcome all thoughts, feedback and constructive critiques: editor@leapsmag.com.
A curated selection of responses are collected here.